Fiche 3: Trigonométrie

Représentation graphique:

Définition:

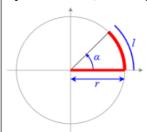
Le plan est rapporté à un repère orthonormé $\left(\mathbf{O}\;;\;\mathring{i}\;,\mathring{j}\right)$ On appelle cercle trigonométrique le cercle de centre O et de rayon 1, sur lequel on a choisi un sens de parcours : le sens inverse des aigiuilles d'une montre, appelé sens direct (ou sens positif).

Le périmètre du cercle trigonométrique est égal à 2π

j	Sens trigonométrique
R-1 0	ī

Propriétés:

1) La longueur l d'un arc de cercle intercepté par un angle a, exprimé en radians, est donné par: $l = R \alpha$

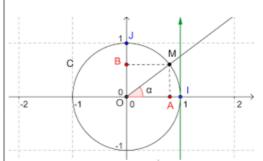


2) La mesure en radian d'un tour complet est de 2π radians.

La mesure en radian d'un $\frac{1}{2}$ tour complet est de π radians.

La mesure en radian d'un $\frac{1}{4}$ tour complet est de $\frac{\pi}{2}$ radians.

Exemple:



On appelle la longueur d'arc $\widehat{\mathbf{I}\,\mathbf{M}}\,$, la longueur de l'arc de cercle situé entre les points I et M : $l = 1 \times \alpha = \alpha$

La longueur d'arc IM est proportionnelle à l'angle IOM

Rappels: hypoténuse côté opposé

cote adjacent C
1) $C o s = \frac{c \hat{o} t \acute{e} a d j a c e n t}{h y p o t h \acute{e} n u s e}$
2) S $in = \frac{c \circ t \circ oppos \circ}{hypoth \circ nuse}$
3) T $a n = \frac{c \hat{o} t \hat{e} o p p o s \hat{e}}{c \hat{o} t \hat{e} a d j a c e n t}$

$$c \circ s \circ 40 \circ = \frac{B \cdot C}{A \cdot C} ; s \circ n \circ 40 \circ = \frac{A \cdot B}{A \cdot C} \text{ et } t \circ a \circ n \circ 40 \circ = \frac{A \cdot B}{B \cdot C}$$

Degré et Radians:

Degrés :	180	x
Radians:	π	$\frac{x \pi}{180}$

Exemples:

1) Mesure en degré: 30 $^{\circ}$

Mesure en radians: $\alpha = 30 \times \frac{\pi}{180} = \frac{\pi}{6}$

2) Mesure en radians: $\frac{5 \pi}{4}$

Mesure en degrés:

$$\beta = \frac{5 \pi}{4} \times \frac{180}{\pi} = \frac{5 \times 180}{4} = 225 \circ$$

Cercle trigonométrique:

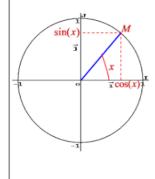
Valeurs remarquables:	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
Représration graphique:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Exemples:	Méthode: On retranche $2 \ k \pi$ au nombre $\frac{25 \pi}{4}$ pour une valeur de k bien choisie afin d'obtenir un réel que l'on sait placer. 1) Placer l'image du réel $\frac{25 \pi}{4}$ sur le cercle trigonométrique: $\frac{25 \pi}{4} - 3 \times (2 \pi) = \frac{25 \pi}{4} - 6 \pi = \frac{25 \pi}{4} - \frac{24 \pi}{4} = \frac{\pi}{4}$ Le réel $\frac{25 \pi}{4}$ a la même image que $\frac{\pi}{4}$ sur le cercle trigonométrique. 2) Placer l'image du réel $\frac{17 \pi}{3}$ sur le cercle trigonométrique: $\frac{17 \pi}{3} - 3 \times (2 \pi) = \frac{17 \pi}{3} - 6 \pi = \frac{17 \pi}{3} - \frac{18 \pi}{3} = \frac{-\pi}{3}$ Le réel $\frac{17 \pi}{3}$ a la même image que $\frac{-\pi}{3}$ sur le cercle trigonométrique. 3) Placer l'image du réel $\frac{7 \pi}{6}$ sur le cercle trigonométrique: $\frac{7 \pi}{6} = \frac{6 \pi}{6} + \frac{\pi}{6} = \pi + \frac{\pi}{6}$ Les points associès à $\frac{7 \pi}{6}$ et $\frac{\pi}{6}$ sont diamétralement opposés sur le cercle trigonométrique.			

Cosinus et Sinus d'un nombre réel:

Définition:

Le *cosinus* du nombre réel x est l'abscisse de M et on note $\cos x$

Le sinus du nombre réel x est l'ordonnée de M et on note $\sin x$



Propriétés:

1)
$$\cos^2 x + \sin^2 x = 1$$

$$2) \cos (x + 2 k \pi) = \cos x$$

3)
$$\sin (x+2k\pi) = \sin x$$

4)
$$-1 \le \cos x \le 1$$

5)
$$-1 \leqslant \sin x \leqslant 1$$

6) À l'aide des relations précédentes, on déduit que :

$$1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}$$

Exemple

$$x \in \left[0; \frac{\pi}{2}\right]$$
 tel que sin $x = 0.96$

Calculons
$$\cos x = ?$$

$$\cos^2 x + \sin^2 x = 1 \iff \cos^2 x = 1 - 0.96^2$$

 $\cos^2 x = 0.0784$

$$x \in \left[0; \frac{\pi}{2}\right]$$
 ce qui signifie que: $\cos x \ge 0$
Donc $\cos x = 0,28$

Périodicité:

Une fonction est dite périodique de période T si pour tout

Définitions:

réel x, on a: f(x+T) = f(x)

Les fonctions cosinus et sinus sont périodiques de période T = 2 π

$$\cos (x+2 k \pi) = \cos x \text{ où } k \in \mathbb{Z}$$

$$\sin (x+2 k \pi) = \sin x \text{ où } k \in \mathbb{Z}$$

Parité:

La fonction *cosinus* est paire car $\cos(-x) = \cos(x)$

La fonction sinus est impaire car $\sin(-x) = -\sin(x)$

Exemple:

Exemple: Montrons que la fonction $f(x) = 2 \sin x \cos x$ est impaire

On calcule:

$$f(-x) = 2 \sin(-x) \times \cos(x)$$

$$f(-x) = 2 \sin x \cos x = -f(x)$$

Donc la fonction f: $x \mapsto 2 \sin x \cos x$ est impaire.

Interprétations grapiques:

1) La courbe représentative de la fonction Cosinus admet un axe de symétrie: c'est *l'axe des ordonnées* .

Tableau variations sur $I = [-\pi; \pi]$:

Grâce à la parité, la fonction cosinus est paire, on peut réduire l'intervalle I à l'intervalle [0; π] puis l'obtenir sur I grâce à la symétrie axiale, d'axe l'axe des ordonnées d'où:

x	- π	$\frac{-\pi}{2}$	0	$\frac{\pi}{2}$	π
cos x	-1 🖊	0	\nearrow_1	0	_j-1

2) La courbe représentative de la fonction Sinus admet un centre de symétrie: c'est le *centre du repère*, le point O de coordonnées O (0; 0).

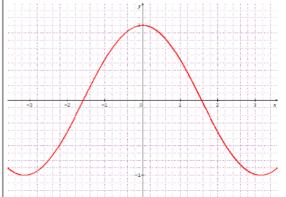
Tableau variations sur $[-\pi;\pi]$:

Grâce à la parité, la fonction sinus est impaire, on peut réduire l'intervalle I à l'intervalle $\begin{bmatrix} 0 & \pi \end{bmatrix}$ puis l'obtenir sur I grâce à la symétrie centrale, de centre O (0~;0) d'où:

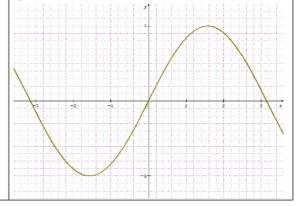
x	- π	$\frac{-\pi}{2}$	0	$\frac{\pi}{2}$	π
cos x	0 🗸	- 1	$\nearrow_0\nearrow$	1	∠ 0

Représentations graphiques:

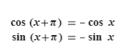
1) Cosinus:

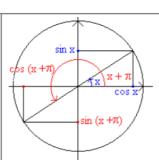


2) Sinus:



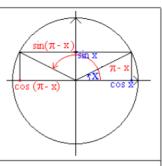
Angles associés:

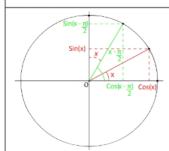




$$\cos (\pi - x) = -\cos x$$

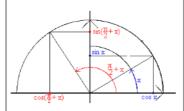
$$\sin (\pi - x) = \sin x$$





$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$



$$\cos\left(x + \frac{\pi}{2}\right) = -\sin x$$

$$\sin\left(x + \frac{\pi}{2}\right) = \cos x$$

Exemple 1:
$sin\left(\frac{5\pi}{3}\right) = ?$
$\frac{5\pi}{3} = \frac{6\pi}{3} - \frac{\pi}{3} = 2\pi - \frac{\pi}{3}$
Les points associés à $\frac{5 \pi}{3}$ et $\frac{-\pi}{3}$

ont la même

image sur le cercle trigonométrique.

Donc on a:

$$\sin\left(\frac{5\pi}{3}\right) = \sin\left(2\pi - \frac{\pi}{3}\right) = \sin\left(-\frac{\pi}{3}\right)$$

Car sinus est périodique de période $T=2~\pi$ De plus la fonction sinus est impaire:

$$\sin(-x) = -\sin(x)$$

D'où

$$\sin\left(\frac{5\pi}{3}\right) = \sin\left(-\frac{\pi}{3}\right) = -\sin\left(\frac{\pi}{3}\right)$$

On sait que : $\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$

Par conséquent: $\sin\left(\frac{5\pi}{3}\right) = -\frac{\sqrt{3}}{2}$

 $\frac{5\pi}{4} = \frac{4\pi}{4} + \frac{\pi}{4} = \pi + \frac{\pi}{4}$

Les points associés à $\frac{5\pi}{4}$ et $\frac{\pi}{4}$ sont diamétralement opposés sur le cercle trigonométrique.

Exemple 2:

Donc
$$\cos\left(\frac{5\pi}{4}\right) = \cos\left(\pi + \frac{\pi}{4}\right)$$

On sait que: $\cos(x+\pi) = -\cos x$
D'où $\cos\left(\frac{5\pi}{4}\right) = -\cos\left(\frac{\pi}{4}\right)$
De plus $\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$

$$\cos\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$

Exemple 3:

Montrons que la fonction $f(x) = 2 \sin x \cos x$ est périodique de période $T = \pi$

On calcule:

 $f(x+\pi) = 2 \sin(x+\pi) \times \cos(x+\pi)$

On sait que:

 $\sin (x+\pi) = -\sin (x)$

 $\cos(x+\pi) = -\cos(x)$

On peut donc écrire:

 $f(x+\pi) = 2(-\sin x)(-\cos x)$

 $f(x+\pi) = 2 \sin x \cos x$ (régle des signes) $f(x+\pi) = f(x)$

Donc la fonction f: $x \mapsto 2 \sin x \cos x$ est périodique de période $T=\pi$.

Equations:

Définitions:

Soit a un réel fixé

1) Les solutions de l'équation $\cos(x) = \cos(a)$ sont les réels de la forme:

$$\begin{cases} x = a + 2 k \pi \\ x = -a + 2 k \pi \end{cases}$$
 où $k \in \mathbb{Z}$

2) Les solutions de l'équation $\sin (x) = \sin (a)$ sont les réels de la forme:

$$\begin{cases} x = a + 2 k \pi \\ x = \pi - a + 2 k \pi \end{cases}$$
 où $k \in \mathbb{Z}$

Exemples:

1) Résoudre dans R l'équation suivante:

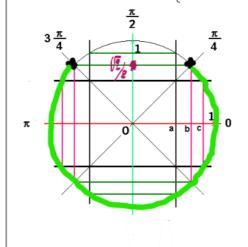
$$\sin x = \frac{1}{\sqrt{2}} \text{ or } \sin \left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \text{ donc } \sin x = \sin \left(\frac{\pi}{4}\right)$$

Par lecture graphique , il y a deux points du cercle d'ordonnée $\frac{1}{\sqrt{2}}$

Voir le graphique ci-dessous

Ce sont les points associés au réels $\frac{\pi}{4}$ et $\frac{3\pi}{4}$

L'ensemble des solutions est : $S = \left\{ \frac{\pi}{4} + 2 k \pi ; \frac{3 \pi}{4} + 2 k \pi \right\}$



2) Résoudre l'inéquation sin $x<\frac{1}{\sqrt{2}}$ dans $]-\pi$; π]

A l'aide du graphique ci-dessus, on a :

$$S = \int -\pi \; ; \; \frac{\pi}{4} \left[\; \; \mathsf{U} \; \right] \; \frac{3 \; \pi}{4} \; ; \; \pi \left[\; \; \mathsf{N} \; \right] \;$$